¹⁵N-Multilabeled Adenine and Guanine Nucleosides. Syntheses of [1,3,NH₂-¹⁵N₃]- and [2-¹³C-1,3,NH₂-¹⁵N₃]-Labeled Adenosine, Guanosine, 2'-Deoxyadenosine, and 2'-Deoxyguanosine

José-Luis Abad, Barbara L. Gaffney, and Roger A. Jones*,[†]

Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854

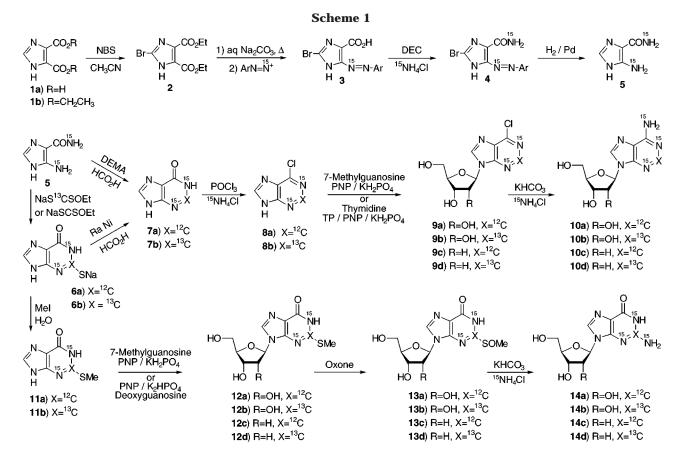
Received December 3, 1998

We report a high-yield route to the following specifically ¹⁵N- and ¹³C-multilabeled nucleosides: [1,3,NH₂-¹⁵N₃]- and [2-¹³C-1,3,NH₂-¹⁵N₃]-adenosine; [1,3,NH₂-¹⁵N₃]- and [2-¹³C-1,3,NH₂-¹⁵N₃]-guanosine; [1,3,NH₂-¹⁵N₃]- and [2-¹³C-1,3,NH₂-¹⁵N₃]-2'-deoxyadenosine; [1,3,NH₂-¹⁵N₃]- and [2-¹³C-1,3,-NH₂-¹⁵N₃]-2'-deoxyguanosine. In each set, the ¹³C2 atom functions as a "tag" that allows the ¹⁵N1 and ¹⁵N3 atoms to be unambiguously differentiated from the untagged versions in ¹⁵N NMR of RNA or DNA fragments. The key intermediate of this synthetic strategy for both the adenine and guanine nucleosides is [NH2,CONH2-15N2]-5-amino-4-imidazolecarboxamide. The [2-13C]-label is added through a ring closure using [13C]-sodium ethyl xanthate (NaS13CSOEt). Enzymatic transglycosylation of either multilabeled 6-chloropurine or multilabeled 2-mercaptohypoxanthine and a final reaction with ¹⁵NH₃ give the adenine and guanine nucleosides. This is the first report of a [3-15N]-labeled guanine nucleoside.

Specific ¹⁵N-labeling of DNA fragments with single ¹⁵N labels demonstrated its value for NMR studies of nucleic acid structure and interactions.¹⁻¹¹ However, to maximize the information available from a single NMR experiment and a single synthesis, we have recently expanded these studies to include in one nucleoside as many ¹⁵N labels as can be unambiguously distinguished.¹²⁻¹⁴ Thus, we have reported synthetic methods for triply labeled [1,7,-NH₂-¹⁵N₃]-adenosine, [1,7,NH₂-¹⁵N₃]-guanosine, and their deoxy analogues and a variety of doubly labeled versions. Further, for the guanosine series, we have also reported procedures that include a 2-13C label that functions as a tag so that two otherwise identical ¹⁵N-multilabeled nucleosides incorporated into DNA or RNA fragments can be differentiated.¹³ We now extend this work to a new family of multilabeled adenine and guanine nucleosides, with and without ¹³C tags, that includes the N3 atom.

- 732-445-4900. Fax: 732-445-5866. E-mail: jones@ † Phone: rutchem.rutgers.edu.
- (1) Gao, X.; Jones, R. A. J. Am. Chem. Soc. 1987, 109, 1275-1278. (2) Kupferschmitt, G.; Schmidt, J.; Schmidt, T.; Fera, B.; Buck, R.; Rüterjans, H. Nucleic Acids Res. 1987, 15, 6225-6241.
- (3) Massefski, W., Jr.; Redfield, A.; Sarma, U. D.; Bannerji, A.; Roy, S. J. Am. Chem. Soc. 1990, 112, 5350-5351.
- (4) Wang, C.; Gao, H.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1991, 113, 5486-5488.
- (5) Wang, C.; Gao, X.; Jones, R. A. J. Am. Chem. Soc. 1991, 113, 1448-1450.
- (6) Gaffney, B. L.; Marky, L. A.; Jones, R. A. Nucleic Acids Res. 1982, 10. 4351-4361
- (7) Goswami, B.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1993, 115, 3832-3833.
- (8) Rhee, Y.; Wang, C.; Gaffney, B. L.; Jones, R. A. *J. Am. Chem. Soc.* **1993**, *115*, 8742–8746.
- (9) Macmillan, A. M.; Lee, R. J.; Verdine, G. L. J. Am. Chem. Soc. 1993, 115, 4921-4922.
- (10) Gaffney, B. L.; Goswami, B.; Jones, R. A. J. Am. Chem. Soc. 1993, 115, 12607-12608.
- (11) Gaffney, B. L.; Kung, P.-P.; Wang, C.; Jones, R. A. J. Am. Chem. Soc. **1995**, *117*, 12281–12283.
- (12) Pagano, A. R.; Lajewski, W. M.; Jones, R. A. J. Am. Chem. Soc. **1995**, *117*, 11669–11672.
- (13) Zhao, H.; Pagano, A. R.; Wang, W.; Shallop, A.; Gaffney, B. L.; Jones, R. A. *J. Org. Chem.* **1997**, *62*, 7832–7835.
 (14) Pagano, A. R.; Zhao, H.; Shallop, A.; Jones, R. A. *J. Org. Chem.* **1998**, *63*, 3213–3217.

Here we report the syntheses of [1,3,NH₂-¹⁵N₃]- and [2-13C-1,3,NH2-15N3]-labeled adenosine, guanosine, and their deoxy analogues. While singly [3-¹⁵N]-labeled adenine has been described previously,¹⁵⁻¹⁸ the work described here is the first report of any [3-15N]-labeled guanine nucleoside. Incorporation of these nucleosides into DNA and RNA fragments will provide valuable information, particularly regarding interactions with minor groove binding agents.


Synthesis of singly [3-¹⁵N]-labeled adenine using nitration of 4-bromoimidazole has been reported by several groups.^{15–17} Several years ago, we introduced an alternative method based on a milder azo coupling reaction to introduce the ¹⁵N, which gave [NH₂-¹⁵N]-5-amino-4imidazolecarboxamide (AICA).¹⁸ The syntheses reported here begin with this same procedure but incorporate a second ¹⁵N as part of the amide functionality. Thus, the ethyl diester of the commercially available imidazole-4,5dicarboxylic acid is brominated with N-bromosuccinimide (NBS) to afford 2 (see Scheme 1). Saponification of 2 followed by a diazocoupling with $[\beta^{-15}N]$ -4-bromobenzenediazonium ion, generated in situ by diazotization of 4-bromoaniline using Na¹⁵NO₂, gives the singly labeled azo acid **3** in 83% yield. Our previous route to the amide using ethyl chloroformate¹⁸ worked well with excess NH₃ but gives low yields when only a few equivalents of ¹⁵NH₃ are employed (generated in situ with DBU/¹⁵NH₄-Cl in CH₃CN). However, use of carbodiimides such as dicyclohexylcarbodiimide (DCC) or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) gives the doubly labeled azoamide 4 in 93% yield with only 1.25 equiv of ${\rm ^{15}NH_4Cl.}$ Concomitant reduction of the bromo

⁽¹⁵⁾ Barrio, M. D. C. G.; Scopes, D. I. C.; Holtwick, J. B.; Leonard, N. J. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 3986–3988.
 (16) Sethi, S. K.; Gupta, S. P.; Jenkins, E. E.; Whitehead, C. W.;

Townsend, L. B.; McCloskey, J. A. J. Am. Chem. Soc. 1982, 104, 3349-3353.

⁽¹⁷⁾ Baker, B. F.; Dervan, P. B. J. Am. Chem. Soc. 1989, 111, 2700-2712.

⁽¹⁸⁾ Rhee, Y. S.; Jones, R. A. J. Am. Chem. Soc. 1990, 112, 8174-8175.

and azo groups to give the doubly labeled AICA, **5**, is accomplished using excess H_2 with 10% Pd/C in methanol saturated with NH₃. Similar results are obtained using Zn/HCl/Pd/10%C in 2-propanol, but the isolation and purification of **5** by this procedure is more difficult.

Ring closure using diethoxymethyl acetate (DEMA), as we have reported previously,^{12,18,19} gives the doubly ¹⁵Nlabeled hypoxanthine 7a, from which adenine nucleosides 10a,c are obtained. To introduce the C2 label, and to provide access to guanine nucleosides, we use an alternative ring closure reaction using sodium ethyl xanthate, made from either $[^{12}C]$ - or $[^{13}C]$ -CS₂, to give the mercaptohypoxanthines **6a**,**b**.²⁰ The latter can be reduced to **7b** using Raney nickel in formic acid. Hypoxanthines 7a,b are then converted to the corresponding 6-chloropurines 8a.b. which readily undergo enzymatic transglycosylation using as sugar donors 7-methylguanosine or thymidine to give **9a**,**b** and **9c**,**d**, respectively. Finally, the third ¹⁵N is introduced by chlorine displacement with 2 equiv of ¹⁵NH₄Cl/KHCO₃, to give the four multilabeled adenine nucleosides, 10a-d.

These adenine nucleosides could be converted to the corresponding guanine nucleosides by a five-step rearrangement,¹³ but the N1 label would be lost in the process. The mercaptohypoxanthines **6a**,**b** offer an alternate route which preserves this label. Methylation of **6a**,**b** with iodomethane gives the corresponding 2-methylthiohypoxanthines, **11a**,**b**. Enzymatic transglycosylation of **11a**,**b** with purine nucleoside phosphorylase (PNP) in the presence of either 7-methylguanosine or 2'-deoxy-

guanosine affords the corresponding ribo- or 2'-deoxyribonucleosides, **12a**–**d**. In each case, 10% of the N7 isomer was formed along with the N9 isomer.²¹ The regiochemistry observed for PNP couplings normally is exclusively N9, but it has been reported that coupling of the pyrimidopurine M_1G by this method also gives 10% of the N7 isomer.²² Oxidation of **12a**–**d** to the corresponding sulfoxides **13a**–**d** with Oxone (2KHSO₅–KHSO₄–K₂SO₄) in water followed by displacement of the methylsulfoxyl group with [¹⁵N]-NH₃ generated from ¹⁵NH₄Cl in KHCO₃ gives the guanine nucleosides **14a–d**.

Table 1 shows NMR chemical shifts and coupling constants for the base protons and labeled atoms of the final multilabeled nucleosides **10b,d** and **14b,d**. The nucleosides without ¹³C labels had the same ¹H, ¹³C, and ¹⁵N chemical shifts. In the adenine nucleosides **10b,d**, the one-bond coupling between H2 and C2 is large (199 Hz) while the smaller two-bond couplings of H2 to N1 and N3 are similar (16 Hz), leading to doublets of apparent triplets for H2. In the amino groups of all four compounds, the one-bond coupling between hydrogen and nitrogen is the normal ~90 Hz. Small (3 Hz) three-bond couplings between the amino hydrogens and the N1 are apparent in the adenine nucleosides but not in the guanine nucleosides.

⁽¹⁹⁾ Gaffney, B. L.; Kung, P.-P.; Jones, R. A. J. Am. Chem. Soc. 1990, 112, 6748–6749.

⁽²⁰⁾ Yamazaki, A.; Kumashiro, I.; Takenishi, T. J. Org. Chem. **1967**, 32, 1825–1828.

⁽²¹⁾ The side products we observed were found to return to the free bases **11a,b**, upon treatment with acid, or isomerize to the correct nucleosides **12a**–**d**, upon treatment with PNP without a sugar donor. To determine conclusively the identity of the minor products, we prepared singly labeled [7-¹⁵N]-2-(methylthio)hypoxanthine by omitting the RaNi desulfurization in a route we have reported previously.¹² The minor product formed upon transglycosylation using this [7-¹⁵N]-2-(methylthio)hypoxanthine then was isolated. The N7 linkage was confirmed by the observation of coupling (9 Hz) between the ¹⁵N7 and the C1'.

⁽²²⁾ Chapeau, M.-C.; Marnett, L. J. Chem. Res. Toxicol. 1991, 4, 636-638.

Table 1. NMR Chemical Shifts and Coupling Constants for Base Protons and Labeled Atoms for 10b,d and 14b,d^a

compd	H1	H2	H8	NH_2	$C2^{b}$	$N1^{b}$	$N3^{b}$	$\mathbf{NH}_2{}^b$
10b		8.12 (dt) 199: H2–C2 16: H2–N1,N3	8.33 (s)	7.36 (dd) 90: H–N 3: H–N1	152.4 (dd) 3: C2-N1/N3 2: C2-N1/N3	236.7 (d) 5: N1–NH ₂	223.3 (s)	82.9 (d) 4: NH ₂ -N1
10d		8.12 (dt) 199: H2–C2 16: H2–N1,N3	8.32 (s)	7.28 (dd) 90: H–N 3: H–N1	152.4 (br)	236.7 (d) 5: N1-NH ₂	223.8 (s)	82.5 (d) 4: NH ₂ -N1
14b	10.6 (br)		7.91 (s)	6.53 (d) 90: H–N	154.2 (ddd) 23: C2-NH ₂ 13: C2-N1 7: C2-N3	152.1 (d) 12: N1-C2	166.8 (t) 6: N3–C2,NH ₂	74.6 (dd) 23: NH ₂ -C2 4: NH ₂ -N3
14d	11.2 (br)		7.85 (s)	6.70 (d) 88: H–N	155.0 (ddd) 23: C2-NH ₂ 12: C2-N1 7: C2-N3	157.7 (d) 10: N1-C2	167.1 (t) 6: N3–C2,NH ₂	75.2 (ddd) 23: NH ₂ -C2 6: NH ₂ -N3 2: NH ₂ -N1

^{*a*} Each entry shows chemical shift (δ) and splitting pattern in parentheses, followed by coupling constants (Hz) and designation of coupled atoms. ^{*b*} Proton decoupled.

Table 2. EI Mass Spectral	l Data for 10a–d ^a
---------------------------	-------------------------------

				-			
compd	Μ	M - 30	M - 89	b + 30	b+2	b + 1	b - 27/28
10a	270 (3)	240 (10)	181 (28)	167 (74)	139 (27)	138 (100)	110 (10)
10b	271 (4)	241 (11)	182 (33)	168 (84)	140 (67)	139 (100)	110 (13)
10c	254 (2)	224 (4)	165 (22)	167 (10)	139 (18)	138 (100)	110 (17)
10d	255 (3)	225 (7)	166 (36)	168 (11)	140 (26)	139 (100)	110 (11)

^a Entries for significant ions show mass followed by relative abundance in parentheses.

In the proton-decoupled $^{13}\mathrm{C}$ spectra, the one-bond C–N couplings are significant in the guanines (23, 13, and 7 Hz) but are much smaller in adenosine (3 and 2 Hz) and are not resolved in 2'-deoxyadenosine. This difference also occurs in many of the intermediates.

The nitrogen chemical shifts are consistent with literature values.²³ Some couplings among the C2 and the three nitrogens are resolved in the proton-decoupled spectra of these four compounds, while others are not. For example, in adenosine, the largest coupling of N1 is to the amino nitrogen, while, in guanosine, it is to C2. We have previously noted the surprisingly large (23 Hz) coupling between the amino nitrogen and C2 in the guanosines.¹³ The ¹H, ¹³C, and ¹⁵N NMR spectra for these four compounds are included in the Supporting Information.

Table 2 shows EI MS mass and relative abundance of significant ions for adenine nucleosides 10a-d. The results are consistent with known mass spectral data, which are well-documented.^{1,24} The presence of three ¹⁵N atoms in **10a** (m/z 270) and **10c** (m/z 254) is seen in their molecular ions, which are three units larger than unlabeled adenosine (m/z 267) and deoxyadenosine (m/z 251), respectively. The additional ¹³C atom in **10b** (m/z 271)and **10d** (m/2255) is also evident. Loss of the 5' group as CH₂O results in ions 30 units smaller than the molecular ions. Fragmentation of the sugar by loss of the 3', 4', and 5' groups gives ions 89 units smaller than the molecular ions, while loss of all but the 1' group gives ions 30 units larger than the base ions. The base + H ion is known to fragment by successive losses of HCN units.²⁴ Using singly labeled [1-15N]-deoxyadenosine, we have previously shown conclusively that the first HCN lost includes N1.¹ Not surprisingly, the work reported here demonstrates that this lost HCN also includes C2, since the resulting ion $(m/z \ 110)$ is the same in all four cases. The FAB

spectra obtained for the guanine nucleosides have as significant ions only the M + 1 and the B + 2 ions (Experimental Section). The presence of three ¹⁵N atoms in **14a,c** is seen in their molecular ions, M + 1 = 287 and 271, respectively, which are three units larger than unlabeled guanosine (283) and deoxyguanosine (267). The additional ¹³C atom in **14b** (M + 1 = 288) and **14d** (M + 1 = 272) is also evident. Mass spectra for all eight final products are included in the Supporting Information.

Experimental Section

General Methods. All ¹H NMR spectra were acquired at 200 MHz, and ¹³C NMR spectra, at 50.3 MHz. ¹⁵N NMR spectra were acquired at 40.5 MHz, and chemical shifts are reported relative to NH₃ using external 1 M [¹⁵N]-urea in DMSO at 25 °C at 77.0 ppm as a reference.²⁵ Analytical HPLC was carried out with Waters C-18 Nova-Pak cartridges (8 × 100 mm) using a gradient of 2–20% acetonitrile in 0.1 M triethylammonium acetate (TEAA) at a flow rate of 2 mL/min. Preparative reversed-phase HPLC was performed with three Waters Delta-Pak PrepPak cartridges (40 × 100 mm, C₁₈ 300 Å, 15 μ m) in series at a flow rate of 40 mL/min. UV data were determined from multiwavelength HPLC using a diode array detector and Millennium software.

The [15 N]-NH₄Cl and [15 N]-NaNO₂ were obtained from Isotec Inc., and the [13 C]-CS₂ was from Cambridge Isotope Laboratories. Thymidine phosphorylase was obtained from Sigma Chemical Co., and purine nucleoside phosphorylase (PNP) was a gift from Burroughs Wellcome Co. and is also available from commercial sources. General reagents were obtained from Aldrich Chemical Co.

Ethyl Imidazole-4,5-dicarboxylate (1b).¹⁸ A mixture of imidazole-4,5-dicarboxylic acid (1a) (97% pure, 24 g, 149 mmol), 1.5 L of absolute ethanol, and 150 mL of H_2SO_4 was refluxed for 2 days under N_2 until a homogeneous solution was obtained. The mixture was concentrated, neutralized with saturated aqueous NaHCO₃, and then continuously extracted with CH₂Cl₂. The organic layer was washed twice with 0.1 M NH₄HCO₃, and the combined aqueous layers were backwashed with CH₂Cl₂. The combined organic layers were dried

⁽²³⁾ Levy, G. C. Nitrogen-15 nuclear magnetic resonance spectroscopy, John Wiley & Sons: New York, 1979.

⁽²⁴⁾ Shaw, S. J.; Desiderio, D. M.; Tsuboyama, K.; McCloskey, J. A. J. Am. Chem. Soc. **1970**, *92*, 2510–2522.

⁽²⁵⁾ Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield, E.; Markley, J. L.; Sykes, B. D. *J. Biomol. NMR* **1995**, *6*, 135–140.

over anhydrous MgSO₄, filtered, and concentrated to give 26 g (123 mmol, 83%) of pure **1b**: IR 1705 cm⁻¹; UV λ_{max} 257 nm; ¹H NMR (CDCl₃) δ 12.10 (br s, 1H), 7.90 (s, 1H), 4.41 (q, J = 7 Hz, 4H), 1.38 (t, J = 7 Hz, 6H); ¹³C NMR (CDCl₃) δ 160.8, 137.7, 129.8, 61.4, 14.1.

Ethyl 2-Bromoimidazole-4,5-dicarboxylate (2).¹⁸ To a mixture of **1b** (26 g, 123 mmol) and 33 g (183 mmol) of *N*-bromosuccinimide (NBS) was added 300 mL of dry acetonitrile under N₂. The resulting solution was stirred in the dark for 24 h and concentrated to dryness. The residue was dissolved in 1.2 L of ethyl acetate, and the solution was washed four times with brine (250 mL), twice with saturated aqueous Na₂SO₃ (100 mL), and twice again with brine (100 mL). The organic layer was dried over MgSO₄ and concentrated to dryness. The residue was purified by flash chromatography on silica gel using a gradient of 0–10% CH₃OH in CH₂Cl₂ to give 34 g (117 mmol, 95%) of pure **2**: IR 1750 cm⁻¹; UV λ_{max} 286 ; ¹H NMR (CDCl₃) δ 11.00 (br s, 1H), 4.41 (q, *J* = 7 Hz, 4H), 1.37 (t, *J* = 7 Hz, 6H); ¹³C NMR (CDCl₃) δ 159.4, 131.8, 120.2, 61.7, 13.9.

[5-¹⁵N]-5-((4-Bromophenyl)azo)-2-bromo-4-imidazolecarboxylic Acid (3).¹⁸ A suspension of 2 (25 g, 86 mmol) and Na₂CO₃ (24 g) in 850 mL of water was stirred at 100 °C for 36 h and then cooled to 0 °C. To a cold solution of 4-bromoaniline (97% pure, 13.4 g, 78 mmol) in 78 mL of 10% HCl and 350 mL of water was added dropwise to a cold solution of Na¹⁵NO₂ (5.7 g, 79 mmol) in 100 mL of water. After 20 min, when the 4-bromoaniline had reacted completely (HPLC), a cold solution of Na₂CO₃ (11 g) in 125 mL of water was added slowly with stirring. This cold mixture was then added slowly to the cold aqueous solution of 2. After 5 min, the initially yellow solution became red, and a thick precipitate formed. Stirring was continued for 2 h, after which the solid was filtered out and dissolved in 600 mL of aqueous Na₂CO₃ (10 g). A black residue remained that contained no product. The aqueous solution was washed with CH_2Cl_2 (5 \times 100 mL) and then acidified with concentrated HCl to afford a yellow precipitate. This precipitate was collected by filtration, washed with cold water (3 imes40 mL), and dried under vacuum over P2O5 to give 27 g (71 mmol, 83%) of pure **3**: IR 1720 cm⁻¹; UV λ_{max} 235 nm, 357 nm, λ_{\min} 270 nm; ¹H NMR (DMSO- d_6) δ 13.50 (br s, 1H), 7.79 (s, 4H); 13 C NMR (DMSO- d_6) 160.3, 151.3 (d, J = 6 Hz), 132.7, 125.2, 124.5 (br s), 123.1; ¹⁵N NMR (DMSO- d_6) δ 486 (br s).

[5,CONH₂-¹⁵N₂]-5-((4-Bromophenyl)azo)-2-bromo-4-imidazolecarboxamide (4). To a mixture of 3 (9.5 g, 25 mmol), hydroxybenzotriazole (3.5 g, 25 mmol), and ¹⁵NH₄Cl (1.8 g, 32 mmol) in a 2 L flask was added 1.4 L of anhydrous CH₃CN under N2. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) (5.5 g, 29 mmol) was dissolved in 450 mL of anhydrous CH_3CN in a 500 mL round-bottom flask under N_2 . Both flasks were kept for 2 h at -15 °C in a freezer after which the DEC solution was cannulated to the 2 L flask kept at -15 °C with stirring. During the transfer, 5.5 mL of DBU (36 mmol) was added. Portions of water (3 \times 20 mL) were added after 4, 6, and 8 h, and stirring was continued at -10°C for 36 h. The solvent was then evaporated, and the resulting orange precipitate was suspended in 400 mL of H₂O and allowed to stand overnight at 4 °C. The orange precipitate was collected by filtration. The filtrate was acidified with concentrated HCl until the pH was 5 and then extracted with CH₂- Cl_2 (2 \times 25 mL). The orange filter cake was dissolved in 3 L of warm aqueous Na₂CO₃ (60 g), leaving a dark brown residue that was discarded. The red solution was washed with CH2- Cl_2 (3 \times 100 mL) and then neutralized with concentrated HCl. The resulting yellow precipitate was filtered out and washed with H_2O (2 \times 50 mL). Small amounts of additional product were recovered from the combined CH₂Cl₂ layers by evaporation and solubilization in warm aqueous Na₂CO₃ followed by acidification. The combined products were dried under vacuum over P₂O₅ to afford 8.8 g (24 mmol, 93%) of pure 4: IR 1663 cm⁻¹; UV λ_{max} 248 nm, 399 nm, λ_{min} 275 nm; ¹H NMR (DMSO d_6) δ 8.2–7.2 (m); ¹³C NMR (DMSO- d_6) 159.4 (d, J = 18 Hz), 151.1 (d, J = 5 Hz), 149.1, 132.5, 131.0, 125.0, 124.6, 123.1; ¹⁵N NMR (DMSO-*d*₆) 470, 109; HRMS *m*/*z* 372.8957 (calcd for C10H7ON315N2Br2: 372.8958). Anal. Calcd for C10H7N315N2OBr₂·0.25CH₃OH: C, 32.14; H, 2.11; N, 18.29. Found: C, 32.26; H, 2.09; N, 18.01.

[NH₂,CONH₂-¹⁵N₂]-5-Amino-4-imidazolecarboxamide (AICA) (5). To a mixture of 4.4 g (12 mmol) of 4, 2.5 g of 10% Pd/C, and 0.20 g of 1% Pt/C in a 1 L round-bottom flask was cannulated under N₂ 0.95 L of a saturated solution of NH₃(g) in methanol. The resulting mixture was stirred for 10 min at which point H₂ was bubbled through the solution for 6 h from balloons. The mixture was then filtered through a bed of Celite to give a clear, pale yellow solution. After evaporation of the solvent, the residue was dissolved in 40 mL of H₂O, washed with ether (3 \times 20 mL), and then applied to a reversed phase preparative column which was eluted with water. Formic acid (2 mL/50 mL HPLC fraction) was added to fractions containing the product. Evaporation of the solvent gave 1.8 g (10 mmol, 88%) of the formate salt of 5: mp 147–8 °C; UV $\bar{\lambda}_{max}$ 230 nm (shoulder), 267 nm; ¹H NMR (DMSO- d_6) δ 8.14 (s, 1H), 7.19 (s, 1H), 6.72 (d, J = 88 Hz, 2H); ¹³C NMR (DMSO- d_6) 164.7 (d, J = 16 Hz), 163.3, 145.8 (d, J = 16 Hz), 129.6, 107.5; ¹⁵N NMR (DMSO-d₆) 98, 50; HRMS m/z 128.0483 (calcd for C₄H₆-ON2¹⁵N2: 128.0482). Anal. Calcd for C4H6ON2¹⁵N2·H2O: C, 32.87; H, 5.52; N, 38.34. Found: C, 33.08; H, 5.55; N, 38.39.

[¹³C]-Sodium Ethyl Xanthate (NaS¹³CSOEt). To a mixture of 2.1 g of NaOH (53 mmol) dissolved by sonication in 200 mL of absolute ethanol was added 4 g (52 mmol) of [¹³C]-CS₂ (97–99%), and the pale yellow solution was stirred overnight at room temperature. The solvent was evaporated, and the white residue was dried under vacuum to afford 7.6 g (52 mmol, 99%) of [¹³C]-sodium ethyl xanthate: UV λ_{max} 300 nm; ¹H NMR (DMSO-*d*₆) δ 4.21 (dq, *J*₁ = 4 Hz, *J*₂ = 7 Hz, 2H), 1.16 (t, *J* = 7 Hz, 3H); ¹³C NMR (DMSO-*d*₆) δ 229.8, 66.0, 14.5.

 $[2\ensuremath{^{13}\text{C-1}},3\ensuremath{^{15}\text{N}_2}]\ensuremath{^{-2}\text{-Mercaptohypoxanthine}}$ (6b). A mixture of 2.6 g of 5 (20 mmol) and 3.4 g (23 mmol) of [13C]-sodium ethyl xanthate in 80 mL of anhydrous N,N-dimethylformamide was stirred under N₂ at room temperature for 20 min and then refluxed for 4 h. The clear solution turned dark green, and a white precipitate formed. The solution was allowed to cool, and 160 mL of CH₃CN was added. The precipitate was filtered out and washed with CH₃CN (3 \times 50 mL) to afford 4.6 g of crude product. The filtrate was evaporated to dryness, and the residue was purified by reversed phase preparative HPLC using aqueous NH_4HCO_3 (pH = 8) to afford an additional 0.3 g of product. The combined products were used without further purification to make 7b or 11b. Pure analytical samples were prepared by solubilization in water and precipitation with 10% HCl: mp > 300 °C; UV λ_{max} 280 nm; ¹H NMR (DMSO- d_6) δ 13.60 (br s, 1H), 13.23 (d, J = 96 Hz, 1H), 12.16 (d, J = 92 Hz, 1H), 8.05 (s, 1H); ¹³C NMR (DMSO-d₆) 173.2 (C2), 154.1 (d, J = 8 Hz), 149.5 (d, J = 16 Hz), 141.2, 111.3 (d, J = 8 Hz); ¹⁵N NMR (DMSO- d_6) 178 (d, J = 11 Hz), 148 (d, J = 14 Hz); HRMS m/z 171.0087 (calcd for C₄¹³CH₄ON₂¹⁵N₂S: 171.0080). Anal. Calcd for C413CH4ON215N2S.0.6H2O: C, 33.00; H, 2.88; N, 30.79. Found: C, 32.95; H, 2.78; N, 30.64.

[1,3-¹⁵N₂]-Hypoxanthine (7a). To a mixture of 9.5 g (55 mmol) of the formate salt of 5 and 200 mL of anhydrous DMF under N₂ was added 9 mL of diethoxymethyl acetate (DEMA). The resulting suspension was stirred for 15 min at room temperature at which point 2.25 mL of formic acid was added and the mixture was heated at 135 °C for 4 h. The suspension was concentrated to a gray solid, resuspended in 100 mL of refluxing acetonitrile, and then chilled. The solid was collected by filtration and dried in a vacuum desiccator over P2O5 to give 7.0 g (51 mmol, 92%) of pure **7a**: mp > 300 °C; UV λ_{max} 250 nm; ¹H NMR (D₂O/NaOD) δ 8.04 (t, J = 13 Hz, 1H), 7.84 (s, 1H); ¹³C NMR (D₂O/NaOD) 170.3 (t, J = 4 Hz), 162.9 (d, J = 6 Hz), 153.9, 153.6 (d, J = 2 Hz), 127.1; ¹⁵N NMR (D₂O/ NaOD) 231, 220; HRMS m/z 138.0330 (calcd for C5H4-ON₂¹⁵N₂: 138.0326). Anal. Calcd for $C_5H_4ON_2^{15}N_2 \cdot 0.125H_2O$: C, 42.79; H, 3.05; N, 40.57. Found: C, 42.65; H, 2.88; N, 40.21.

[2-¹³C-1,3-¹⁵N₂]-Hypoxanthine (7b). A stirred mixture of crude **6b** (4.8 g) and 10 g of Raney nickel (50% water suspension) in 250 mL of H_2O was heated at 60 °C for 10 min, and 3.5 mL of formic acid was added. The mixture was refluxed for 30 min, 10 g of EDTA was added, and the mixture was

refluxed for an additional 2 h. The hot reaction mixture was filtered, and the Raney nickel filter cake was washed with boiling water to give a blue solution which was combined with the filtrate, concentrated, and purified by reversed phase preparative HPLC using a gradient of 0–20% CH₃CN in H₂O. Appropriate fractions of **7b** were concentrated to dryness and dried in a vacuum desiccator over P₂O₅ to afford 2.6 g (19 mmol, 95% from **5**) of pure **7b**: mp > 300 °C; UV λ_{max} 250 nm; ¹H NMR (D₂O/NaOD) δ 8.04 (dt, $J_1 = 13$ Hz, $J_2 = 195$ Hz, 1H), 7.84 (s, 1H); ¹³C NMR (D₂O/NaOD) 170.4, 163.3 (dd, $J_1 = 2$ Hz, $J_2 = 6$ Hz), 154.3 (C2), 152.0, 127.5 (d, J = 7 Hz); ¹⁵N NMR (D₂O/NaOD) 228 (d, J = 2 Hz), 220; HRMS *m*/*z* 139.0362 (calcd for C₄¹³CH₄ON₂¹⁵N₂: 139.0359). Anal. Calcd for C₄¹³CH₄ON₂¹⁵N₂: C, 43.17; H, 2.90; N, 40.28. Found: C, 43.11; H, 2.80; N, 40.13.

[1,3-¹⁵N₂]-6-Chloropurine (8a). To a mixture of 7a (7.0 g, 51 mmol) and N,N-dimethylaniline (DMA) (18 mL, 0.14 mol) under N_2 was added \mbox{POCl}_3 (175 mL, 1.9 mol). The resulting mixture was heated at 130 °C for 30 min and monitored by HPLC. The solution was then allowed to cool and was concentrated to a black gum. The gum was dissolved in 150 mL of NH₄OH (30%) with cooling (-20 °C). The aqueous solution was filtered through a bed of Celite and washed once with 100 mL of ethyl acetate and then twice with 50 mL of ether. The NH₃ was evaporated, and the residue was dissolved in 80 mL of water, acidified to pH 2 with concentrated HCl (with cooling in an ice bath), and then continuously extracted with ether for 5 days. The ether layer was evaporated, and the residue was dissolved in 20 mL of NH₄OH (30%). This aqueous solution was concentrated to 10 mL and applied to a reversed phase preparative column. Elution with a gradient of 0-10% CH₃CN in water gave product fractions that were concentrated to a white solid and dried in a vacuum desiccator over P₂O₅ to give 7.0 g (45 mmol, 88%) of pure **8a**: mp > 300 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.76 (dd, J_1 = 15 Hz, $J_2 = 16$ Hz, 1H), 8.71 (s, 1H); ¹³C NMR (DMSO- d_6) 154.1 (dd, $J_1 = 2$ Hz, $J_2 = 4$ Hz), 151.5 (br s), 147.7 (dd, $J_1 = 3$ Hz, $J_2 = 5$ Hz), 146.3, 129.3; ¹⁵N NMR (DMSO- d_6) 273, 256; HRMS m/z155.9980 (calcd for C₅H₃N₂¹⁵N₂Cl: 155.9987). Anal. Calcd for $C_5H_3N_2^{15}N_2Cl \cdot 0.125H_2O$: C, 37.81; H, 2.06; N, 35.28. Found: C, 37.76; H, 1.87; N, 35.70.

[2-¹³C-1,3-¹⁵N₂]-6-Chloropurine (8b). The same procedure used to prepare 8a, except for starting with 7b instead of 7a, was used for 8b: mp > 300 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.73 (dt, $J_1 = 15$ Hz, $J_2 = 209$ Hz, 1H), 8.68 (s, 1H); ¹³C NMR (DMSO- d_6) 154.1, 151.4 (dd, $J_1 = 3$ Hz, $J_2 = 4$ Hz, C2), 147.7 (dd, $J_1 = 3$ Hz, $J_2 = 5$ Hz), 146.2, 129.3 (dd, $J_1 = 3$ Hz, $J_2 = 12$ Hz); ¹⁵N NMR (DMSO- d_6) 273 (d, J = 4 Hz), 256; HRMS m/z 157.0015 (calcd for C4¹³CH₃N₂¹⁵N₂Cl: 157.0020). Anal. Calcd for C4¹³CH₃N₂¹⁵N₂Cl: 0.25H₂O: C, 37.06; H, 2.18; N, 34.58. Found: C, 37.30; H, 1.84; N, 34.79.

7-Methylguanosine. A suspension of guanosine (41 g, 140 mmol) and dimethyl sulfate (28 mL, 296 mmol) in *N*,*N*-dimethylacetamide (350 mL) was stirred at room temperature for 6 h. The pH of the homogeneous solution was adjusted to 10 with NH₄OH (30%), and the solution was poured into 900 mL of chilled acetone (0 °C). The white precipitate was filtered out, suspended in absolute ethanol (400 mL), refiltered, suspended in dry ether (400 mL), and finally filtered again. The white product was dried in a vacuum desiccator over P_2O_5 to give 40 g (130 mmol, 93%) of 7-methylguanosine, which was used without further purification.

[1,3-¹⁵N₂]-**6**-**Chloro**-**9**-(β -**D**-*erythro*-**pentofuranosyl)purine (9a).** To a suspension of **8a** (3.4 g, 22 mmol) and 7-methylguanosine (13 g, 44 mmol) in aqueous K₂HPO₄ (70 mL, 0.02 M) was added 6 N KOH until the pH was 7.4. To this mixture was added purine nucleoside phosphorylase (500 μ L, 2.1 units/ μ L). The mixture was kept at 43 °C with gentle agitation for 7 days. The reaction mixture was then filtered and the filter cake extracted using sonication with DMF (2 × 80 mL) and then H₂O (100 mL). All solutions were combined and concentrated under vacuum just until a white precipitate started to appear (60 mL). Water was added (60 mL), and 40 mL of the warm solution was filtered directly onto a reversed phase preparative column which was eluted with 0–10% CH₃-

CN in water. Appropriate fractions were combined and concentrated to a white solid, which was dried in a vacuum desiccator over P_2O_5 to give 5.8 g (20.1 mmol, 92%) of pure **9a**: mp 167–8 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.94 (s, 1H), 8.80 (t, J = 15 Hz, 1H), 6.04 (d, J = 5 Hz, 1H), 5.59 (d, J = 5 Hz, 1H), 5.27 (d, J = 5 Hz, 1H), 5.11 (t, J = 5 Hz, 1H), 4.59 (q, J = 5 Hz, 1H), 4.20 (q, J = 4 Hz, 1H), 3.80–3.50 (m, 2 H); ¹³C NMR (DMSO- d_6) 151.6 (dd, $J_1 = 2$ Hz, $J_2 = 5$ Hz), 149.3 (dd, $J_1 = 3$ Hz, $J_2 = 5$ Hz), 131.4 (t, J = 2 Hz), 88.2, 85.7, 74.0, 70.1, 61.0; ¹⁵N NMR (DMSO- d_6) 275, 251; HRMS m/z 288.0407 (calcd for C₁₀H₁₁O₄N₂¹⁵N₂Cl: 288.0410). Anal. Calcd for C₁₀H₁₁O₄N₂¹⁵N₂Cl: 0.125H₂O: C, 41.27; H, 3.90; N, 19.94. Found: C, 41.49; H, 3.76; N, 19.63.

[2-¹³C-1,3-¹⁵N₂]-6-Chloro-9-(β -D-*erythro*-pentofuranosyl)purine (9b). The same procedure used to prepare 9a, except for starting with 8b rather than 8a, was used for 9b: mp 166– 168 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.93 (s, 1H), 8.80 (dt, $J_1 = 15$ Hz, $J_2 = 210$ Hz, 1H), 6.04 (d, J = 5 Hz, 1H), 5.56 (d, J = 5 Hz, 1H), 5.24 (d, J = 5 Hz, 1H), 5.08 (t, J = 5Hz, 1H), 4.58 (q, J = 5 Hz, 1H), 4.20 (q, J = 4 Hz, 1H), 4.00 (q, J = 4 Hz, 1H), 3.80–3.50 (m, 2 H); ¹³C NMR (DMSO- d_6) 151.7 (dd, $J_1 = 2$ Hz, $J_2 = 4$ Hz, C2), 149.3 (dd, $J_1 = 3$ Hz, $J_2 = 5$ Hz), 145.8, 131.4 (d, $J_1 = 2$ Hz), 88.3, 85.7, 74.1, 70.1, 61.0; ¹⁵N NMR (DMSO- d_6) 275 (d, J = 4 Hz), 251 (d, J = 2Hz); HRMS m/z 289.0432 (calcd for C₉¹³CH₁₁O₄N₂¹⁵N₂Cl: 289.0443). Anal. Calcd for C₉¹³CH₁₁O₄N₂¹⁵N₂Cl: C, 41.46; H, 3.83; N, 19.34. Found: C, 41.58; H, 3.70; N, 19.68.

[1,3-¹⁵N₂]-6-Chloro-9-(2-deoxy-β-d-erythro-pentofuranosyl)purine (9c). To a suspension of 8a (3.5 g, 22 mmol) and thymidine (13 g, 44 mmol) in aqueous K₂HPO₄ (90 mL, 0.02 M) was added 6 N KOH until the pH was 7.0. To this mixture was added purine nucleoside phosphorylase (400 μ L, 2.1 units/ μ L) and thymidine phosphorylase (dThd Pase, 800 units). The mixture was kept at 43 °C with gentle agitation for 3 days. Sodium chloride (15 g) was added, and the reaction mixture was continuously extracted with CH₂Cl₂ for 48 h at which time HPLC analysis indicated that all the 8a and 9c had been extracted as well as small amounts of thymidine and thymine. The organic phase (white suspension) was concentrated and purified by reversed phase preparative chromatography using a gradient of 0-15% CH₃CN in water. The fractions containing 8a (0.26 g, 5% recovered yield) and 9c (5.1 g, 19 mmol, 83%) were collected separately, concentrated, and then dried in a vacuum desiccator over P_2O_5 ; mp > 147-8 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.90 (s, 1H), 8.78 (t, J = 16 Hz, 1H), 6.47 (t, J = 6 Hz, 1H), 5.38 (d, J = 4 Hz, 1H), 4.98 (t, J = 5 Hz, 1H), 4.45 (m, 1H), 3.90 (q, J = 3 Hz, 1H), 3.58 (m, 2H), 2.80-2.70 (m, 1H), 2.50-2.40 (m, 1H); ¹³C NMR (DMSO d_6) 151.6 (t, J = 4 Hz), 151.3 (dd, $J_1 = 2$ Hz, $J_2 = 5$ Hz), 149.2 (dd, $J_1 = 3$ Hz, $J_2 = 4$ Hz), 145.8, 131.4 (d, J = 2 Hz), 88.1, 84.2, 70.4, 61.3; ¹⁵N NMR (DMSO-d₆) 275, 251; HRMS m/z 272.0454 (calcd for $C_{10}H_{11}O_3N_2^{15}N_2Cl$: 272.0460). Anal. Calcd for C₁₀H₁₁O₃N₂¹⁵N₂Cl: C, 44.05; H, 4.07; N, 20.55. Found: C, 44.00; H, 4.04; N, 20.45.

[2-¹³C-1,3-¹⁵N₂]-6-Chloro-9-(2-deoxy-β-D-*erythro*-pentofuranosyl)purine (9d). The same procedure used to prepare 9c, except for starting with **8b** rather than **8a**, was used for 9d: mp 146–148 °C; UV λ_{max} 267 nm; ¹H NMR (DMSO- d_6) δ 8.88 (s, 1H), 8.78 (dt, $J_1 = 15$ Hz, $J_2 = 210$ Hz, 1H), 6.46 (t, J = 6 Hz, 1H), 5.36 (d, J = 4 Hz, 1H), 4.95 (t, J = 5 Hz, 1H), 4.44 (m, 1H), 3.89 (q, J = 3 Hz, 1H), 3.58 (m, 2H), 2.80–2.70 (m, 1H), 2.50–2.40 (m, 1H); ¹³C NMR (DMSO- d_6) 151.5 (t, J = 3 Hz, C2), 149.1 (d, J = 3 Hz), 145.7, 131.3 (d, J = 11 Hz), 88.1, 84.2, 70.4, 61.3; ¹⁵N NMR (DMSO- d_6) 275 (d, J = 4 Hz), 251 (d, J = 2 Hz); HRMS m/z 273.0483 (calcd for C9¹³CH₁₁-O₃N₂¹⁵N₂Cl: 273.0494). Anal. Calcd for C9¹³CH₁₁O₃N₂¹⁵N₂Cl: C, 43.89; H, 4.05; N, 20.47. Found: C, 43.74; H, 3.98; N, 20.50.

[1,3,NH₂-¹⁵N₃]-Adenosine (10a). A mixture of **9a** (5.5 g, 19 mmol), [¹⁵N]-NH₄Cl (2.2 g, 40 mmol), and KHCO₃ (6.1 g, 60 mmol) in DMSO (14 mL) was sealed in a 100 mL flask and kept in an oven at 80 °C for 7 days. The cooled (0 °C) reaction vial was opened carefully, the contents were diluted with 70 mL of water, and the pH was adjusted to 7 with glacial acetic acid. The product was purified by reversed phase preparative

chromatography using a gradient of 0–20% CH₃CN in water. Appropriate fractions were concentrated to dryness, and the solid was dried in a vacuum desiccator over P₂O₅ to afford 4.6 g (17 mmol, 89%) of pure **10a**: mp 233–4 °C; UV λ_{max} 260 nm; ¹H NMR (DMSO- d_6) δ 8.33 (s, 1H), 8.12 (t, *J* = 15 Hz, 1H), 7.34 (dd, *J*₁ = 2 Hz, *J*₂ = 90 Hz, 2H), 5.86 (d, *J* = 5 Hz, 1H), 5.43 (2H), 5.18 (d, *J* = 4 Hz, 1H), 4.60 (q, *J* = 5 Hz, 1H), 4.12 (m, 1H), 3.95 (m, 1H), 3.78–3.40 (2H); ¹³C NMR (DMSO- d_6) 156.2 (dt, *J*₁ = 2 Hz, *J*₂ = 16 Hz), 152.4 (br s), 149.1 (dd, *J*₁ = 2 Hz, *J*₂ = 5 Hz), 140.0, 119.4, 88.0, 86.0, 73.5, 70.7, 61.8; ¹⁵N NMR (DMSO- d_6) 237, 223, 83; HRMS *m*/*z* 270.0873 (calcd for C₁₀H₁₃O₄N₂¹⁵N₃: 270.0879). Anal. Calcd for C₁₀H₁₃O₄N₂-¹⁵N₈. C, 44.45; H, 4.85; N, 25.92. Found: C, 44.57; H, 4.91; N, 26.18.

[2-¹³**C**-**1**,**3**,**NH**₂-¹⁵**N**₃**]**-**Adenosine (10b).** The same procedure used to prepare **10a**, except for starting with **9b** rather than **9a**, was used for **10b**: mp 233–234 °C; UV λ_{max} 260 nm; ¹H NMR (DMSO- d_6) δ 8.33 (s, 1H), 8.12 (dt, $J_1 = 16$ Hz, $J_2 = 199$ Hz, 1H), 7.36 (dd, $J_1 = 3$ Hz, $J_2 = 90$ Hz, 2H), 5.87 (d, J = 6 Hz, 1H), 5.40 (2H), 5.18 (1H), 4.60 (t, J = 5 Hz, 1H), 4.13 (dd, $J_1 = 3$ Hz, $J_2 = 4$ Hz, 1H), 3.96 (q, J = 3 Hz, 1H), 3.78–3.40 (m, 2H); ¹³C NMR (DMSO- d_6) 156.1 (dt, $J_1 = 3$ Hz, $J_2 = 19$ Hz), 152.4 (br s, C2), 149.1 (dd, $J_1 = 2$ Hz, $J_2 = 5$ Hz), 140.0, 119.4, 88.0, 86.0, 73.5, 70.7, 61.8; ¹⁵N NMR (DMSO- d_6) 237 (d, J = 5 Hz), 223, 83 (d, J = 4 Hz); HRMS m/z 271.0906 (calcd for C₉¹³CH₁₃O₄N₂¹⁵N₃: 271.0912). Anal. Calcd for C₉¹³CH₁₃O₄N₂¹⁵N₃: 0.25 H₂O: C, 43.56; H, 4.94; N, 25.40. Found: C, 43.37; H, 4.83; N, 25.57.

[1,3,NH₂-¹⁵N₃]-2'-Deoxyadenosine (10c). A mixture of 9c (4.8 g, 18 mmol), [15N]-NH4Cl (1.93 g, 36 mmol), and KHCO3 (5.5 g, 54 mmol) in DMSO (12 mL) was sealed in a 100 mL flask and kept in an oven at 80 °C for 7 days. The cooled (0 °C) reaction vial was opened carefully, the contents were diluted with 66 mL of water, and the pH was adjusted to 7 with glacial acetic acid. The product was purified by reversed phase preparative chromatography using a gradient of 0-20%CH₃CN in water. Appropriate fractions were concentrated to dryness, and the solid was dried in a vacuum desiccator over P₂O₅ to afford 4.3 g (17 mmol, 94%) of pure **10c**: mp 190-1 °C (dec); UV λ_{max} 260 nm; ¹H NMR (DMSO- d_6) δ 8.33 (s, 1H), 8.13 (t, J = 16 Hz, 1H), 7.33 (dd, $J_1 = 3$ Hz, $J_2 = 90$ Hz, 2H), 6.34 (t, J = 7 Hz, 1H), 5.31 (d, J = 4 Hz, 1H), 5.26 (t, J = 5Hz, 1H), 4.40 (m, 1H), 3.88 (m, 1H), 3.72-3.38 (m, 2H), 2.73 (m, 1H), 2.25 (ddd, $J_1 = 3$ Hz, $J_2 = 6$ Hz, $J_3 = 11$ Hz, 1H); ¹³C NMR (DMSO-*d*₆) 156.1 (dt, *J*₁ = 4 Hz, *J*₂ = 21 Hz), 152.4, 148.9 (dd, $J_1 = 2$ Hz, $J_2 = 5$ Hz), 139.6, 119.3, 88.1, 84.0, 71.1, 62.0; ¹⁵N NMR (DMSO-*d*₆) 237, 224, 82; HRMS *m*/*z* 254.0925 (calcd for C₁₀H₁₃O₃N₂¹⁵N₃: 254.0929). Anal. Calcd for C₁₀H₁₃O₃N₂¹⁵N₃. 0.875H₂O: C, 44.48; H, 5.51; N, 25.94. Found: C, 44.33; H, 5.31; N, 26.19.

[2-¹³C-1,3,NH₂-¹⁵N₃]-2'-Deoxyadenosine (10d). The same procedure used to prepare 10c, except for starting with 9d rather than 9c, was used for 10d: mp 191–192 °C; UV λ_{max} 260 nm; ¹H NMR (DMSO- d_6) δ 8.32 (s, 1H), 8.12 (dt, $J_1 = 16$ Hz, $J_2 = 199$ Hz, 1H), 7.28 (dd, $J_1 = 3$ Hz, $J_2 = 90$ Hz, 2H), 6.33 (t, J = 7 Hz, 1H), 5.29 (d, J = 4 Hz, 1H), 5.28 (t, J = 5 Hz, 1H), 4.40 (m, 1H), 3.87 (m, 1H), 3.72–3.38 (2H), 2.73 (m, 1H), 2.25 (ddd, $J_1 = 3$ Hz, $J_2 = 6$ Hz, $J_3 = 11$ Hz, 1H); ¹³C NMR (DMSO- d_6) 156.1 (d, J = 20 Hz), 152.4 (C2), 148.9 (dd, $J_1 = 2$ Hz, $J_2 = 5$ Hz), 139.6, 119.3, 88.1, 84.0, 71.1, 62.0; ¹⁵N NMR (DMSO- d_6) 237 (d, J = 5 Hz), 224, 83 (d, J = 4 Hz); HRMS m/z 255.0952 (calcd for C9¹³CH₁₃O₃N₂¹⁵N₃: 255.0963). Anal. Calcd for C9¹³CH₁₃O₃N₂¹⁵N₃·0.5H₂O: C, 45.45; H, 5.34 N, 26.51. Found: C, 45.06; H, 5.24; N, 26.46.

Sodium Ethyl Xanthate (NaSCSOEt). The same procedure described above was used except unlabeled CS_2 was employed.

[1,3-¹⁵N₂**]-2-Mercaptohypoxanthine (6a).** A mixture of 2.6 g (20 mmol) of $[NH_2,CONH_2-$ ¹⁵N_2]-5-amino-4-imidazolecarboxamide (5) and 3.4 g (24 mmol) of sodium ethyl xanthate in 80 mL of anhydrous *N*,*N*-dimethylformamide was stirred under N₂ at room temperature for 20 min and then refluxed for 4 h. The clear solution turned dark green, and a white precipitate formed. The solution was allowed to cool, and 160 mL of CH₃CN was added. The precipitate was collected by filtration and was washed with CH₃CN (3 \times 50 mL) to afford 4.6 g of crude product. The filtrate was evaporated to dryness, and the residue was purified by reversed phase preparative HPLC using aqueous NH_4HCO_3 (pH = 8) to afford an additional 0.3 g of product. The combined products were used without further purification to make 11a. Pure analytical samples of **6a** were prepared by solubilization in water and precipitation with 10% HCl: mp > 300 °C; UV λ_{max} 280 nm; ¹H NMR (DMSO- d_6) δ (ppm) 13.54 (br s, 1H), 13.10 (br s, 1H), 12.19 (d, J = 92 Hz, 1H), 8.06 (s, 1H); ¹³C NMR (DMSO- d_6) 173.4 (dd, $J_1 = 11$ Hz, $J_2 = 15$ Hz), 153.5 (d, J = 9 Hz), 149.1 (d, J = 19 Hz), 141.6, 110.4 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz); ¹⁵N NMR (DMSO- d_6) 178, 148; HRMS m/z 170.0040 (calcd for C₅H₄ON₂¹⁵N₂S: 170.0047). Anal. Calcd for C₅H₄ON₂¹⁵N₂S· 0.66H₂O: C, 32.96; H, 2.95; N, 30.76. Found: C, 33.32; H, 2.62; N, 30.76.

[1,3-15N2]-2-(Methylthio)hypoxanthine (11a). To a solution of 4 g of crude 6a in 150 mL of water was added 1.4 mL (22 mmol) of iodomethane. The mixture was stirred vigorously in darkness at room temperature for 24 h. A white precipitate formed, and the starting material disappeared. The mixture was concentrated to 50 mL, and the precipitate was collected by filtration. Additional product was obtained from the filtrate by preparative reversed phase HPLC using a gradient of 0-20% CH₃CN in H₂O, giving a total of 3.2 g (17 mmol, 85%) from 5) of pure 11a: mp 290–1 °C (dec); UV λ_{max} 262 nm; ¹H NMR (D₂O/NaOD) δ (ppm) 7.71 (s, 1H), 2.52 (s, 3H); ¹³C NMR (D₂O) 169.9 (d, J = 4 Hz), 164.2 (m), 152.9, 124.5, 16.4; ¹⁵N NMR (D₂O/NaOD) 227, 213; HRMS m/z 184.0210 (calcd for C₆H₆ON₂¹⁵N₂S: 184.0203). Anal. Calcd for C₆H₆ON₂¹⁵N₂S· 0.66H2O: C, 36.73; H, 3.77; N, 28.56. Found: C, 36.93; H, 3.53; N, 28.30.

[2-¹³C-1,3-¹⁵N₂]-2-(Methylthio)hypoxanthine (11b). The same procedure used to prepare 11a, except for starting with **6b** rather than **6a**, was used to prepare **11b**: ¹H NMR (D₂O/NaOD) δ (ppm) 7.72 (s, 1H), 2.53 (d, J = 4 Hz, 3H); ¹³C NMR (D₂O) 169.8 (d, J = 4 Hz), 168.5, 164.4 (C2), 152.3 (dd, $J_1 = 3$ Hz, $J_2 = 29$ Hz, 124.2 (d, J = 5 Hz), 16.3 (d, J = 9 Hz); ¹⁵N NMR (D₂O/NaOD) 227, 213; HRMS *m*/*z* 185.0243 (calcd for C₅¹³CH₆ON₂¹⁵N₂S: 185.0237). Anal. Calcd for C₅¹³CH₆ON₂¹⁵N₂S: 0.75H₂O: C, 36.26; H, 3.81; N, 28.20. Found: C, 36.40; H, 3.63; N, 27.96.

[1,3-¹⁵N₂]-2-(Methylthio)inosine (12a). To a suspension of 11a (3.3 g, 18 mmol) and 7-methylguanosine (12 g, 41 mmol) in aqueous K₂HPO₄ (70 mL, 0.02 M) was added 6 N potassium hydroxide until the pH was 7.4. To this mixture was added purine nucleoside phosphorylase (500 μ L, 2.1 units/ μ L). The mixture was kept at 43 °C with gentle agitation for 7 days. The reaction mixture was then filtered and the filter cake extracted by sonication with DMF (2 \times 80 mL) and then H₂O (100 mL). All solutions were combined and concentrated under vacuum until a white precipitate first appeared (~ 60 mL). Then 60 mL of water was added, and 40 mL portions of the warm solution were filtered directly onto the reversed phase preparative column and eluted with 0-10% CH₃CN in water. Appropriate fractions were combined, concentrated, and dried in a vacuum desiccator over P_2O_5 to give 4.8 g (15 mmol, 83%) of pure 12a: mp 245-6 °C (dec); UV λ_{max} 263 nm; ¹H NMR (DMSO- d_6) δ (ppm) 12.6 (br d, J = 83 Hz, 1H), 8.20 (s, 1H), 5.83 (d, J = 6 Hz, 1H), 5.46 (d, J = 6 Hz, 1H), 5.20 (d, J = 4Hz, 1H), 4.98 (t, J = 5 Hz, 1H), 4.52 (q, J = 5 Hz, 1H), 4.12 (q, J = 4 Hz, 1H), 3.90 (q, J = 4 Hz, 1H), 3.57 (m, 2H), 2.55 (s, 3H); ¹³C NMR (DMSO- d_6) 157.7 (d, J = 7 Hz), 156.8 (d, J = 9Hz), 148.5 (d, J = 6 Hz), 138.1 (m), 121.2 (d, J = 6 Hz), 87.3, 85.5, 73.9, 70.3, 61.4, 13.2; ¹⁵N NMR (DMSO-d₆) 206, 171; HRMS (FAB) m/z 317.0706 (calcd for C11H15O5- $N_2^{15}N_2S$: 317.0704). Anal. Calcd for $C_{11}H_{14}O_5N_2^{15}N_2S \cdot H_2O$: C, 39.51; H, 4.82; N, 16.76. Found: C, 39.78; H, 4.77; N, 16.97.

[2.¹³C⁻¹,3.¹⁵N₂]-2-(Methylthio)inosine (12b). The same procedure used to prepare 12a, except for starting with 11b rather than 11a, was used to prepare 12b: ¹H NMR (DMSO- d_6) δ (ppm) 12.6 (br s, 1H), 8.20 (s, 1H), 5.82 (d, J = 5 Hz, 1H), 5.44 (br s, 1H), 5.21 (br s, 1H), 4.99 (br s, 1H), 4.53 (t, J = 5 Hz, 1H), 4.12 (t, J = 4 Hz, 1H), 3.90 (q, J = 3 Hz, 1H) 3.57 (m, 2H), 2.54 (d, J = 5 Hz, 3H); ¹³C NMR (DMSO- d_6) 157.9

(dd, $J_1 = 2$ Hz, $J_2 = 10$ Hz), 148.5 (d, J = 5 Hz), 138.1, 121.2 (m), 87.3, 85.5, 73.9, 70.4, 61.4, 13.3; ¹⁵N NMR (DMSO- d_6) 206, 173); HRMS (FAB) m/z 318.0753 (calcd for $C_{10}^{13}CH_{15}O_5$ - $N_2^{15}N_2S$: 318.0737). Anal. Calcd for $C_{10}^{13}CH_{14}O_5N_2^{15}N_2S$ ·H₂O: C, 39.40; H, 4.81; N, 16.71. Found: C, 39.64; H, 4.65, N, 17.01.

[1,3-15N2]-2-(Methylthio)-2'-deoxyinosine (12c). To a suspension of 11a (2.5 g, 14 mmol) and 2'-deoxyguanosine (4.3 g, 15 mmol) in aqueous K₂HPO₄ (70 mL, 0.02 M) was added 6 N potassium hydroxide until the pH was 8.4. To this mixture was added purine nucleoside phosphorylase (400 μ L, 2.1 units/ μ L). The flask was sealed and the mixture kept at 43 °C with gentle agitation for 2 days. The reaction mixture was then filtered and the filter cake was extracted by sonication and heating with 2% NH_4OH (4 \times 50 mL). All solutions were combined and concentrated under vacuum until a white precipitate first formed. The mixture was heated and the warm solution was filtered directly onto the reversed phase preparative column which was then eluted with 0-5% CH₃CN in 0.25 M NH₄HCO₃. Unreacted **11a** eluted with 2'-deoxyguanosine, so fractions containing both products were combined, evaporated, heated again with PNP, and then purified. Final fractions containing pure product were combined and concentrated to a white solid, which was dried in a vacuum desiccator over P₂O₅ to give 3.1 g (10 mmol, 71%) of pure 12c: mp 245-6 °C (dec); UV λ_{max} nm; ¹H NMR (DMSO- d_6) δ (ppm) 8.13 (s, 1H), 6.26 (t, J = 7 Hz, 1H), 5.32 (br s, 1H), 4.95 (br s, 1H), 4.38 (m, 1H), 3.83 (m, 1H), 3.52 (m, 2H), 2.67 (m, 1H), 2.53 (s, 3H), 2.26 (ddd, $J_1 = 2$ Hz, $J_2 = 6$ Hz, $J_3 = 12$ Hz, 1H); ¹³C NMR (DMSO- d_6) 158.2 (dd, $J_1 = 2$ Hz, $J_2 = 9$ Hz), 157.9 (d, J = 8 Hz), 148.3 (d, J = 5 Hz), 137.5, 121.2 (dd, $J_1 = 2$ Hz, $J_2 = 7$ Hz), 87.8, 83.4, 70.8, 61.7, 13.2 (d, J = 4 Hz); ¹⁵N NMR (DMSO-d₆) 206, 171; HRMS (FAB) m/z 301.0762 (calcd for C11H15O4N215N2S: 301.0754). Anal. Calcd for C11H14O4N215N2S. 0.75H2O: C, 42.10; H, 4.98; N, 17.85. Found: C, 41.92; H, 4.92; N, 18.04.

[2-¹³C-1,3-¹⁵N₂]-2-(Methylthio)-2'-deoxyinosine (12d). The same procedure used to prepare 12c, except for starting with 11b rather than 11a, was used to prepare 12d: ¹H NMR (DMSO- d_6) δ (ppm) 12.5 (br s, 1H), 8.17 (s, 1H), 6.27 (t, J = 7 Hz, 1H), 5.32 (br s, 1H), 4.91 (br s, 1H), 4.38 (br m, 1H), 3.83 (m, 1H), 3.52 (m, 2H), 2.67 (m, 1H), 2.54 (d, J = 5 Hz, 3H), 2.26 (ddd, $J_1 = 2$ Hz, $J_2 = 6$ Hz, $J_3 = 12$ Hz, 1H); ¹³C NMR (DMSO- d_6) 157.6 (dd, $J_1 = 2$ Hz, $J_2 = 10$ Hz, C2), 156.9 (d, J = 8 Hz), 148.2 (d, J = 5 Hz), 137.9, 121.2 (dd, $J_1 = 2$ Hz, $J_2 = 7$ Hz), 87.8, 83.3, 70.7, 61.7, 13.2 (d, J = 4 Hz); ¹⁵N NMR (DMSO- d_6) 206, 171; HRMS (FAB) m/z 302.0793 (calcd for C₁₀¹³CH₁₅O₄N₂¹⁵N₂S: 302.0788). Anal. Calcd for C₁₀¹³CH₁₄-O₄N₂¹⁵N₂S. H₂O: C, 41.37; H, 5.05; N, 17.55. Found: C, 41.21; H, 4.67; N, 17.85.

[1,3-15N2]-2-(Methylsulfoxyl)inosine (13a). To a cold stirred mixture of 4.5 g (14 mmol) of 12a in 700 mL of H₂O was added dropwise a solution of 3.8 g (7.5 mmol, 1.2 eq) of Oxone (2KHSO₅-KHSO₄-K₂SO₄) in 100 mL H₂O over 2 h. The mixture was stirred vigorously for an additional 2 h at 0 °C. The mixture became a clear solution, and Na₂SO₃ (0.26 g, 2 mmol) was added. The solution was concentrated, and the diastereoisomeric mixture was purified by reversed phase preparative HPLC using 0-20% CH₃CN in H₂O to give 4.5 g (13.5 mmol, 96%) of pure **13a**: UV λ_{max} 258 nm; ¹H NMR $(DMSO-d_6) \delta$ (ppm) 8.43 (s, 1H), 5.88 (d, J = 6 Hz, 1H), 5.48 (br s, 1H), 5.21 (br s, 1H), 4.97 (br s, 1H), 4.52 (q, J = 3 Hz, 1H), 4.14 (t, J = 4 Hz, 1H), 3.93 (q, J = 4 Hz, 1H) 3.57 (m, 2H), 2.95 (s, 3H); ¹³C NMR (DMSO- d_6) 160.8 (d, J = 8 Hz), 156.9 (d, J = 8 Hz), 147.6 (d, J = 5 Hz), 140.1, 124.2 (d, J = 57 Hz), 87.4, 85.7 (d, J = 15 Hz), 74.1, 70.3 (m), 61.3; ¹⁵N NMR (DMSO-d₆) 213, 174 (br s); HRMS (FAB) m/z 333.0638 (calcd for C₁₁H₁₅O₆N₂¹⁵N₂S: 333.0653). Anal. Calcd for C₁₁H₁₄O₆N₂-¹⁵N₂S·0.5H₂O: C, 38.71; H, 4.43; N, 16.42. Found: C, 38.81; H, 4.49; N, 16.32.

[2-¹³C-1,3-¹⁵N₂]-2-(Methylsulfoxyl)inosine (13b). The same procedure used to prepare 13a, except for starting with 12b rather than 12a, was used to prepare 13b: ¹H NMR (DMSO- d_6) δ (ppm) 8.44 (s, 1H), 5.88 (d, J = 6 Hz, 1H), 5.53 (br s, 1H), 5.26 (br s, 1H), 5.02 (br s, 1H), 4.53 (br s, 1H), 4.14 (t,

J = 4 Hz, 1H), 3.94 (q, J = 3 Hz, 1H) 3.60 (m, 2H), 2.96 (d, J = 5 Hz, 3H); ¹³C NMR (DMSO- d_6) 160.9 (C2), 157.0 (d, J = 8 Hz), 147.6, 139.9, 124.2, 87.4 (d, J = 4 Hz), 85.8, 74.0 (d, J = 8 Hz), 70.4 (d, J = 2 Hz), 61.3; ¹⁵N NMR (DMSO- d_6) 213, 176 (br s); HRMS (FAB) m/z 334.0688 (calcd for C₁₀¹³CH₁₅O₆-N₂¹⁵N₂S: 334.0687). Anal. Calcd for C₁₀¹³CH₁₄O₆N₂¹⁵N₂S: H₂O: C, 37.60; H, 4.59; N, 15.95. Found: C, 37.63; H, 4.46; N, 15.86.

[1,3-15N2]-2-(Methylsulfoxyl)-2'-deoxyinosine (13c). To a cold stirred mixture of 3.5 g (12 mmol) of **12c** in 650 mL of H₂O was added dropwise a cold solution of 4.1 g (6.6 mmol, 1.15 equiv) of Oxone (2KHSO₅-KHSO₄-K₂SO₄) in 100 mL of H₂O over 2 h. The mixture was stirred vigorously for an additional 2 h at 0 °C. The mixture became a clear solution, and Na_2SO_3 (0.26 g, 2 mmol) was added. The solution was stirred for 10 min, and the pH was adjusted to 6.7 with NaHCO₃. The resulting solution was concentrated, and the diastereoisomeric mixture was purified by reversed phase preparative HPLC using a gradient of 0-20% CH₃CN in H₂O to obtain 3.3 g of nearly pure 13c, which was used without further purification: UV $\hat{\lambda}_{max}$ 258 nm; ¹H NMR (DMSO- d_6) δ (ppm) 7.99 (s, 1H), 6.25 (dd, $J_1 = 6$ Hz, $J_2 = 8$, 1H), 5.32 (d, J = 4 Hz, 1H), 5.04 (br m, 1H), 4.37 (br m, 1H), 3.83 (br m, 1H), 3.52 (br m, 2H), 2.75-2.55 (br m, 1H), 2.68 (s, 3H), 2.19 (ddd, $J_1 = 2$ Hz, $J_2 = 6$ Hz, $J_3 = 13$ Hz, 1H); ¹³C NMR (DMSO d_6) 166.6, 166.0, 149.2 (d, J = 5 Hz), 137.0, 124.7, 87.8, 83.5, 71.0, 62.0, 48.6, 39.7; ¹⁵N NMR (DMSO-d₆) 242 (d, 15 Hz), 204 (d, 13 Hz).

[2-¹³C-1,3-¹⁵N₂]-2-(Methylsulfoxyl)-2'-deoxyinosine (13d). The same procedure used to prepare 13c, except for starting with 12d rather than 12c, was used to prepare 13d: ¹H NMR (DMSO- d_6) δ (ppm) 7.99 (s, 1H), 6.25 (dd, $J_1 = 6$ Hz, $J_2 = 8$ Hz, 1H), 5.33 (br s, 1H), 5.06 (br m, 1H), 4.37 (br m, 1H), 3.83 (br m, 1H) 3.52 (br m, 2H), 3.35 (s, 1H), 2.75–2.55 (br m, 1H), 2.68 (d, J = 4 Hz, 3H), 2.19 (ddd, $J_1 = 2$ Hz, $J_2 = 6$ Hz, $J_3 = 13$ Hz, 1H); ¹³C NMR (DMSO- d_6) 166.7, 166.0 (C2), 149.2 (d, J = 5 Hz), 137.0, 124.7, 87.8, 83.5, 71.1, 62.0, 39.7; ¹⁵N NMR (DMSO- d_6) 242 (d, 15 Hz), 204 (d, 13 Hz).

[1,2,3-¹⁵N₃]-Guanosine (14a). A mixture of 13a (3.3 g, 9.9 mmol), [15 N]-NH₄Cl (1.7 g, 30 mmol), and KHCO₃ (2 g, 20 mmol) in anhydrous DMSO (32 mL) was sealed in a 100 mL vial and was kept at 78 °C for 14 days. The cooled (0 °C) reaction vial was opened carefully, and the contents were concentrated under vacuum to 10 mL, diluted with 90 mL of hot water, and purified in two parts by reversed phase preparative chromatography using a gradient of 0-10% CH₃-CN in water. The combined product fractions were concentrated to dryness, and the solid was dried in a vacuum desiccator over P_2O_5 to give 2.3 g (8.0 mmol, 81%) of pure **14a**: mp 248–9 °C (dec); UV λ_{max} 253 nm; ¹H NMR (DMSO d_6) δ (ppm) 10.65 (br s, 1H), 7.93 (s, 1H), 6.45 (d, J = 89 Hz, 2H), 5.69 (d, J = 5 Hz, 1H), 5.38 (br s, 1H), 5.11 (br s, 1H), 5.03 (br s, 1H), 4.38 (br s, 1H), 4.07 (br s, 1H), 3.86 (q, J = 3Hz, 1H), 3.56 (m, 2H); ¹³C NMR (DMSO- d_6) 156.9 (d, J = 11Hz), 153.7 (ddd, $J_1 = 7$ Hz, $J_2 = 13$ Hz, $J_3 = 23$ Hz), 151.4 (dd, $J_1 = 3$ Hz, $J_2 = 7$ Hz), 135.7 (m), 116.7 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz), 86.4, 85.3, 73.7, 70.4, 61.5; ¹⁵N NMR (DMSO-d₆) 166 (d, J = 5 Hz), 148, 74 (d, J = 5 Hz); MS (FAB) m/z 287 (61%, M + 1); 155 (100%, b + 2); HRMS (FAB) m/z 287.0903 (calcd for C10H14O5N215N3: 287.0906). Anal. Calcd for C10H13O5N2-¹⁵N₃·0.25H₂O: C, 41.31; H, 4.68; N, 24.09. Found: C, 41.00; H, 4.90; N, 24.21.

[2-¹³C-1,2,3-¹⁵N₃]-Guanosine (14b). The same procedure used to prepare 14a, except for starting with 13b rather than 13a, was used to prepare 14b: ¹H NMR (DMSO- d_6) δ (ppm) 10.6 (br s, 1H), 7.91 (s, 1H), 6.53 (d, J = 90 Hz, 2H), 5.68 (d, J = 6 Hz, 1H), 5.5–4.8 (br m, 3H), 4.40 (t, J = 5 Hz, 1H), 4.08 (dd, $J_1 = 3$ Hz, $J_2 = 5$ Hz, 1H), 3.86 (q, J = 4 Hz, 1H), 3.57 (m, 2H); ¹³C NMR (DMSO- d_6) 157.7 (d, J = 11 Hz), 154.2 (dd, $J_1 = 7$ Hz, $J_2 = 13$ Hz, $J_3 = 23$ Hz, C2), 151.4 (dd, $J_1 = 3$ Hz, $J_2 = 7$ Hz), 135.6, 116.8 (dd, $J_1 = 2$ Hz, $J_2 = 7$ Hz), 85.5, 85.3, 73.7, 70.5, 61.5; ¹³N NMR (DMSO- d_6) 167 (t, J = 6 Hz), 152 (d, J = 12 Hz), 75 (dd, $J_1 = 4$ Hz, $J_2 = 23$ Hz); MS (FAB) m/z 288 (100%, M + 1); 156 (99%, b + 2); HRMS (FAB) m/z

288.0941 (calcd for $C_9^{13}CH_{14}O_5N_2^{15}N_3$: 288.0940). Anal. Calcd for $C_9^{13}CH_{13}O_5N_2^{15}N_3$ H_2O : C, 39.35; H, 4.95; N, 22.95. Found: C, 39.56; H, 4.91; N, 23.15.

[1,2,3-15N3]-2'-Deoxyguanosine (14c). A mixture of nearly pure 13c (3.2 g), [15N]-NH4Cl (1.7 g, 30 mmol), and KHCO3 (2 g, 20 mmol) in anhydrous DMSO (32 mL) was sealed in a 100 mL vial and was kept at 78 °C for 14 days. The cooled (0 °C) reaction vial was opened carefully, and the contents were concentrated under vacuum to 10 mL, diluted with 90 mL of hot water, and purified in two parts by reversed phase preparative chromatography using a gradient of 0-10% CH₃-CN in water. The combined product fractions were concentrated to dryness, and the solid was dried in a vacuum desiccator over P_2O_5 to give 2.3 g (8.5 mmol, 71% from 12c) of pure **14c**: mp > 300 °C (dec); UV λ_{max} 253 nm; ¹H NMR (DMSO- d_6) δ (ppm) 10.6 (br d, J = 68 Hz, 1H), 7.91 (s, 1H), 6.44 (d, J = 89 Hz, 2H), 6.11 (dd, $J_1 = 6$ Hz, $J_2 = 7$ Hz, 1H), 5.24 (d, J = 4 Hz, 1H), 4.93 (t, J = 5 Hz, 1H), 4.32 (br m, 1H), 3.79 (br m, 1H), 3.51 (br m, 2H), 2.6-2.4 (br m, 1H), 2.18 (ddd, $J_1 = 3$ Hz, $J_2 = 6$ Hz, $J_3 = 13$ Hz, 1H); ¹³C NMR (DMSO- d_6) 156.9 (d, J = 11 Hz), 153.7 (ddd, $J_1 = 8$ Hz, $J_2 = 13$ Hz, $J_3 =$ 23 Hz), 150.9 (dd, $J_1 = 3$ Hz, $J_2 = 8$ Hz), 135.4, 116.7 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz), 87.6, 82.7, 70.8, 61.8, 39.6; ¹⁵N NMR $(DMSO-d_6)$ 167 (d, J = 6 Hz), 148, 74 (d, J = 5 Hz); MS (FAB) m/z 271 (37%, M + 1); 155 (100%, b + 2); HRMS (FAB) m/z 271.0945 (calcd for C10H14O4N215N3: 271.0957). Anal. Calcd for $C_{10}H_{13}O_4N_2^{15}N_3$, 0.5H₂O: C, 43.01; H, 5.05; N, 25.08. Found: C, 43.31; H, 5.02; N, 25.29.

[2-¹³C-1,2,3-¹⁵N₃]-2'-Deoxyguanosine (14d). The same procedure used to prepare 14c, except for starting with 13d rather than 13c, was used to prepare 14d: ¹H NMR (DMSO- d_6) δ (ppm) 11.2 (br), 7.85 (s, 1H), 6.70 (d, J = 88 Hz, 2H), 6.11 (dd, $J_1 = 6$ Hz, $J_2 = 8$ Hz, 1H), 5.7–4.8 (br s, 2H), 4.33 (br m, 1H), 3.80 (br m, 1H), 3.52 (br m, 2H), 2.6–2.4 (m, 1H), 2.17 (ddd, $J_1 = 3$ Hz, $J_2 = 6$ Hz, $J_3 = 13$ Hz, 1H); ¹³C NMR (DMSO- d_6) 158.9 (d, J = 11 Hz), 155.0 (ddd, $J_1 = 7$ Hz, $J_2 = 12$ Hz, $J_3 = 23$ Hz, C2), 151.0 (dd, $J_1 = 3$ Hz, $J_2 = 7$ Hz), 135.1, 116.8 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz), 87.7, 82.8, 70.9, 61.9, 39.6; ¹⁵N NMR (DMSO- d_6) 167 (t, J = 6 Hz), 158 (d, J = 10 Hz), 75 (ddd, $J_1 = 2$ Hz, $J_2 = 6$ Hz, $J_3 = 23$ Hz); MS (FAB) m/z 272 (37%, M + 1); 156 (100%, b + 2); HRMS (FAB) m/z 272.0983 (calcd for C9¹³CH₁₄O₄N₂¹⁵N₃: 272.0990). Anal. Calcd for C9⁻¹³CH₁₃O₄N₂¹⁵N, 24.22.

Acknowledgment. This work was supported by grants from the National Institutes of Health (GM48802 and GM31483). A postdoctoral fellowship from CIRIT-Generalitat de Catalunya to J.-L.A. is also gratefully acknowledged.

Supporting Information Available: ¹H, ¹³C, and ¹⁵N NMR spectra for **10b**,**d** and **14b**,**d**, as well as mass spectra for **10a**–**d** and **14a**–**d**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO982372K